[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] BALANI S, NGUYEN L V, EAVES C J. Modeling the process of human tumorigenesis [J]. Nat Commun, 2017, 8: 15422.
[3] BEN-DAVID U, HA G, TSENG Y Y, et al. Patient-derived xenografts undergo mouse-specific tumor evolution[J]. Nat Genet, 2017, 49(11): 1567-1575.
[4]BYRNE A T, ALFEREZ D G, AMANT F, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts[J]. Nat Rev Cancer, 2017, 17(4): 254-268.
[5] DROST J, CLEVERS H. Organoids in cancer research[J]. Nat Rev Cancer, 2018, 18(7): 407-418.
[6] LI M, IZPISUA BELMONTE J C. Organoids-preclinical models of human disease[J]. N Engl J Med, 2019, 380(6): 569-579.
[7]PUSCHHOF J, PLEGUEZUELOS-MANZANO C, MARTINEZ-SILGADO A, et al. Intestinal organoid cocultures with microbes[J]. Nat Protoc, 2021, 16(10): 4633-4649.
[8] SUGIMOTO S, KOBAYASHI E, FUJII M, et al. An organoid- based organ-repurposing approach to treat short bowel syndrome[J]. Nature, 2021, 592(7852): 99-104.
[9]HENDRIKS D, ARTEGIANI B, HU H L, et al. Establishment of human fetal hepatocyte organoids and CRISPR-Cas9-based gene knockin and knockout in organoid cultures from human liver[J]. Nat Protoc, 2021, 16(1): 182-217.
[10] ROCK J R, ONAITIS M W, RAWLINS E L, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium[J]. Proc Natl Acad Sci USA, 2009, 106(31): 12771-12775.
[11] VAN DE WETERING M, FRANCIES H E, FRANCIS J M, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4): 933-945.
[12] FUJII M, SHIMOKAWA M, DATE S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis[J]. Cell Stem Cell, 2016, 18(6): 827-838.
[13] WEEBER F, VAN DE WETERING M, HOOGSTRAAT M, et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases[J]. Proc Natl Acad Sci USA, 2015, 112(43): 13308-13311.
[14] BOJ S F, HWANG C I, BAKER L A, et al. Organoid models of human and mouse ductal pancreatic cancer[J]. Cell, 2015, 160(1/2): 324-338.
[15] BARTFELD S, BAYRAM T, VAN DE WETERING M, et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection[J]. Gastroenterology, 2015, 148(1): 126-136.e6.
[16] BROUTIER L, MASTROGIOVANNI G, VERSTEGEN M M, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nat Med, 2017, 23(12): 1424-1435.
[17] SACHS N, DE LIGT J, KOPPER O, et al. A living biobank of breast cancer organoids captures disease heterogeneity[J]. Cell, 2018, 172(1/2): 373-386.e10.
[18] GAO D, VELA I, SBONER A, et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 2014, 159(1): 176-187.
[19] DRIEH UI S E, KRET Z SCH MAR K, CL EVERS H . Establishment of patient-derived cancer organoids for drug- screening applications[J]. Nat Protoc, 2020, 15(10): 3380-3409.
[20] OOFT S N, WEEBER F, DIJKSTRA K K, et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients[J]. Sci Transl Med, 2019, 11(513): eaay2574.
[21] VLACHOGIANNIS G, HEDAYAT S, VATSIOU A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378): 920-926.
[22] SEPPÄLÄ T T, ZIMMERMAN J W, SURI R, et al. Precision medicine in pancreatic cancer: patient derived organoid pharmacotyping is a predictive biomarker of clinical treatment response[J]. Clin Cancer Res, 2022: 4165.
[23] CHEN P, ZHANG X, DING R B, et al. Patient-derived organoids can guide personalized-therapies for patients with advanced breast cancer[J]. Adv Sci (Weinh), 2021, 8(22): e2101176.
[24] YAO Y, XU X Y, YANG L F, et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer[J]. Cell Stem Cell, 2020, 26(1): 17-26.e6.
[25]NOZAKI K, MOCHIZUKI W, MATSUMOTO Y, et al. Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes[J]. J Gastroenterol, 2016, 51(3): 206-213.
[26] CATTANEO C M, DIJKSTRA K K, FANCHI L F, et al. Tumor organoid-T-cell coculture systems[J]. Nat Protoc, 2020, 15(1): 15-39.
[27] PAULI C, HOPKINS B D, PRANDI D, et al. Personalized in vitro and in vivo cancer models to guide precision medicine[J]. Cancer Discov, 2017, 7(5): 462-477.
[28] KOPPER O, DE WITTE C J, LÕHMUSSAAR K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity[J]. Nat Med, 2019, 25(5): 838-849.
[29] LINKOUS A, BALAMATSIAS D, SNUDERL M, et al. Modeling patient-derived glioblastoma with cerebral organoids[J]. Cell Rep, 2019, 26(12): 3203-3211.e5.
[30] UBINK I, BOLHAQUEIRO A C F, ELIAS S G, et al. Organoids from colorectal peritoneal metastases as a platform for improving hyperthermic intraperitoneal chemotherapy[J]. Br J Surg, 2019, 106(10): 1404-1414.
[31] CHEN H, GOTIMER K, DE SOUZA C, et al. Short-term organoid culture for drug sensitivity testing of high-grade serous carcinoma[J]. Gynecol Oncol, 2020, 157(3): 783-792.
[32] DRIEHUIS E, KOLDERS S, SPELIER S, et al. Oral mucosal organoids as a potential platform for personalized cancer therapy[J]. Cancer Discov, 2019, 9(7): 852-871.
[33] LÕHMUSSAAR K, OKA R, ESPEJO VALLE-INCLAN J, et al. Patient-derived organoids model cervical tissue dynamics and viral oncogenesis in cervical cancer[J]. Cell Stem Cell, 2021, 28(8): 1380-1396.e6.
[34] DROST J, KARTHAUS W R, GAO D, et al. Organoid culture systems for prostate epithelial and cancer tissue[J]. Nat Protoc, 2016, 11(2): 347-358.
[35] MARSEE A, ROOS F J M, VERSTEGEN M M A, et al. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids[J]. Cell Stem Cell, 2021, 28(5): 816-
832.
[36] VOTANOPOULOS K I, FORSYTHE S, SIVAKUMAR H, et al. Model of patient-specific immune-enhanced organoids for immunotherapy screening: feasibility study[J]. Ann Surg Oncol, 2020, 27(6): 1956-1967.
[37] OU L L, WANG H S, HUANG H, et al. Preclinical platforms to study therapeutic efficacy of human γδ T cells[J]. Clin Transl Med, 2022, 12(6): e814.
[38]MAGILL S T, VASUDEVAN H N, SEO K, et al. Multiplatform genomic profiling and magnetic resonance imaging identify mechanisms underlying intratumor heterogeneity in meningioma[J]. Nat Commun, 2020, 11(1): 4803.
[39]NYS C, LEE Y L, ROOSE H, et al. Exploring stem cell biology in pituitary tumors and derived organoids[J]. Endocr Relat Cancer, 2022, 29(7): 427-450.
[40]WENSINK G E, ELIAS S G, MULLENDERS J, et al. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients[J]. NPJ Precis Oncol, 2021, 5(1): 30.
[41]BANDA M, MCKIM K L, MYERS M B, et al. Outgrowth of erlotinib-resistant subpopulations recapitulated in patient-derived lung tumor spheroids and organoids[J]. PLoS One, 2020, 15(9): e0238862.
[42]DE WITTE C J, ESPEJO VALLE-INCLAN J, HAMI N, et al. Patient-derived ovarian cancer organoids mimic clinical response and exhibit heterogeneous inter- and intrapatient drug responses[J]. Cell Rep, 2020, 31(11): 107762.
[43]LEE S H, HU W H, MATULAY J T, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer[J]. Cell, 2018, 173(2): 515-528.e17.
[44]SHARICK J T, WALSH C M, SPRACKLING C M, et al. Metabolic heterogeneity in patient tumor-derived organoids by primary site and drug treatment[J]. Front Oncol, 2020, 10: 553.
[45]UKAI S, HONMA R, SAKAMOTO N, et al. Molecular biological analysis of 5-FU-resistant gastric cancer organoids; KHDRBS3 contributes to the attainment of features of cancer stem cell[J]. Oncogene, 2020, 39(50): 7265-7278.
[46]DRAIN A P, ZAHIR N, NORTHEY J J, et al. Matrix compliance permits NF-κB activation to drive therapy resistance in breast cancer[J]. J Exp Med, 2021, 218(5): e20191360.
[47]CHEN B S, ALVARADO D M, ITICOVICI M, et al. Interferon-induced IDO1 mediates radiation resistance and is a therapeutic target in colorectal cancer[J]. Cancer Immunol Res, 2020, 8(4): 451-464.
[48]PUCA L, BAREJA R, PRANDI D, et al. Patient derived organoids to model rare prostate cancer phenotypes[J]. Nat Commun, 2018, 9(1): 2404.
[49]BOLLINGER J, MAY E, MATHEWS D, et al. Patients’perspectives on the derivation and use of organoids[J]. Stem Cell Reports, 2021, 16(8): 1874-1883.
[50]BREDENOORD A L, CLEVERS H, KNOBLICH J A. Human tissues in a dish: the research and ethical implications of organoid technology[J]. Science, 2017, 355(6322): eaaf9414.
[51]BOERS S N, VAN DELDEN J J M, BREDENOORD A L. Broad consent is consent for governance[J]. Am J Bioeth, 2015, 15(9): 53-55.
[52]SCHUTGENS F, CLEVERS H. Human organoids: tools for understanding biology and treating diseases[J]. Annu Rev Pathol, 2020, 15: 211-234.
[53]BOERS S N, VAN DELDEN J J, CLEVERS H, et al. Organoid biobanking: identifying the ethics: organoids revive old and raise new ethical challenges for basic research and therapeutic use[J]. EMBO Rep, 2016, 17(7): 938-941.
[54]BALLARD D, BOYER C, ALEXANDER J. Organoids-preclinical models of human disease[J]. N Engl J Med, 2019, 380(20): 1981-1982.
[55]CHALABI M, FANCHI L F, DIJKSTRA K K, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers[J]. Nat Med, 2020, 26(4): 566-576.
[56]NARASIMHAN V, WRIGHT J A, CHURCHILL M, et al. Medium-throughput drug screening of patient-derived organoids from colorectal peritoneal metastases to direct personalized therapy[J]. Clin Cancer Res, 2020, 26(14): 3662-3670.
[57]STEELE N G, CHAKRABARTI J, WANG J, et al. An organoid-based preclinical model of human gastric cancer[J]. Cell Mol Gastroenterol Hepatol, 2019, 7(1): 161-184.
[58]TIRIAC H, BELLEAU P, ENGLE D D, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer[J]. Cancer Discov, 2018, 8(9): 1112-1129.
[59]LI X D, FRANCIES H E, SECRIER M, et al. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics[J]. Nat Commun, 2018, 9(1): 2983.
[60]PHAN N, HONG J J, TOFIG B, et al. A simple high-throughput approach identifies actionable drug sensitivities in patient-derived tumor organoids[J]. Commun Biol, 2019, 2: 78.
[61]MAZZOCCHI A R, RAJAN S A P, VOTANOPOULOS K I, et al. In vitro patient-derived 3D mesothelioma tumor organoids facilitate patient-centric therapeutic screening[J]. Sci Rep, 2018, 8(1): 2886.
[62]JACOB F, SALINAS R D, ZHANG D Y, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter-and intra-tumoral heterogeneity[J]. Cell, 2020, 180(1): 188-204.e22.
[63]WANG T, PAN W J, ZHENG H, et al. Accuracy of using a patient-derived tumor organoid culture model to predict the response to chemotherapy regimens in stage Ⅳ colorectal cancer: a blinded study[J]. Dis Colon Rectum, 2021, 64(7): 833-850.
[64]LANCASTER M A, RENNER M, MARTIN C A, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467): 373-379.
[65]NISHINAKAMURA R. Human kidney organoids: progress and remaining challenges[J]. Nat Rev Nephrol, 2019, 15(10): 613-624.
[66]LUKONIN I, SERRA D, CHALLET MEYLAN L, et al. Phenotypic landscape of intestinal organoid regeneration[J].
[67]Nature, 2020, 586(7828): 275-280. GANESH K, WU C, O’ROURKE K P, et al. A rectal cancer organoid platform to study individual responses to chemoradiation[J]. Nat Med, 2019, 25(10): 1607-1614.
[68]SHI R S, RADULOVICH N, NG C, et al. Organoid cultures as preclinical models of non-small cell lung cancer[J]. Clin Cancer Res, 2020, 26(5): 1162-1174.
[69]KIM M, MUN H, SUNG C O, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening[J]. Nat Commun, 2019, 10(1): 3991.
[70]ROSENBLUTH J M, SCHACKMANN R C J, GRAY G K, et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages[J]. Nat Commun, 2020, 11(1): 1711.
[71]YAN H H N, SIU H C, LAW S, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening[J]. Cell Stem Cell, 2018, 23(6): 882-897.e11.
[72]YAN H H N, SIU H C, HO S L, et al. Organoid cultures of early-onset colorectal cancers reveal distinct and rare geneti profiles[J]. Gut, 2020, 69(12): 2165-2179.
[73]HU H L, GEHART H, ARTEGIANI B, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids[J]. Cell, 2018, 175(6): 1591-1606.e19.
[74]SHIOTA J, SAMUELSON L C, RAZUMILAVA N. Hepatobiliary organoids and their applications for studies of liver health and disease: are we there yet? [J]. Hepatology, 2021, 74(4): 2251-2263.
[75]YUN J, LEE S H, KIM S Y, et al. Antitumor activity of amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in diverse models of EGFR exon 20 insertion-driven NSCLC[J]. Cancer Discov, 2020, 10(8): 1194-1209.
[76]WANG Y, JIANG T, QIN Z, et al. HER2 exon 20 insertions in non-small cell lung cancer are sensitive to the irreversible pan-HER receptor tyrosine kinase inhibitor pyrotinib[J]. Ann Oncol, 2019, 30(3): 447-455.
[77]DEKKERS J F, VAN VLIET E J, SACHS N, et al. Long-term culture, genetic manipulation and xenotransplantation of human normal and breast cancer organoids[J]. Nat Protoc, 2021, 16(4): 1936-1965.
[78]MAENHOUDT N, DEFRAYE C, BORETTO M, et al. Developing organoids from ovarian cancer as experimental and preclinical models[J]. Stem Cell Reports, 2020, 14(4): 717-729.
[79]HU Y W, SUI X Z, SONG F, et al. Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week[J]. Nat Commun, 2021, 12(1): 2581.
[80]WANG Y C, JEON H. 3D cell cultures toward quantitative high-throughput drug screening[J]. Trends Pharmacol Sci, 2022, 43(7): 569-581.